Bulgarian Academy of Sciences. Space Research Institute.
Aerospace Research in Bulgaria. 22, 2008, Sofia

ANADAPTIVE PARALLEL INTEGRATOR OF ORDINARY
DIFFERENTIAL EQUATIONS SYSTEM
FOR SPACE EXPERIMENT SIMULATION

Atanas Atanassov

Solar-Terrvestrial Influences Laboratory - Bulgarian Academy of Sciences
e-mail: At M Atanassovi@yahoo.com

Abstract

Different passible sources are discussed for enhancement of the calculation time
when solving ordinary differential equations systems to forecast space objects’ motion. This
paper presents an approach for building an integrator of ordinary differential equations
systems for simultaneaus solving of motion equations of multiple objects. A parallelization
of calculation on the base of threads is offered. A method for synchronization is presented.
The technological advance and the invasion of multi-core pracessors make actual the
exanmined approach for developing an integrator of ordinary differential equations systems.

Kevwards and Phrases: ordinary differential equations integrator/solver,
adaptive algorithms; mulli threading. thread parallelism;

1. Introduction

Computer simulation has long ago become a tool for quality improvement
of space experiments, which is applied in their design, planning and control. The
various dynamical models are based on ordinary differential equations systems
(ODEsS). The intensive use of such models (for example, of the motion of different
bodies in the near Earth’s or other planets” space) may be related with increase of
the consumed processor time in the case of computer accomplishment. When
tackling this issue (if it exists), the focus is on creating more effective numerical
methods and computer programs for ODESS integration.

The delay in the course of processor frequency increase is expected to be

59

mailto:At_M_Atanassov@yahoo.com

successfully compensated with increase of their core number. Presently, the AMD
and Intel available double core processors of on the market have reasonable prices.
Quad core processors are manufactured, too. However, soon expected the
manufacturing of single-core processors and the development of 8 and 16 core
processors is expected to end soon. Multi-core processors are intended at disposing
two or more processors on one crystal in order to work at lower voltage and with
lower frequency. The latter aims to reduce released heat, which is a major issue in
increasing operational frequency. This, however, does not ensure automatical raising
of the calculation power of multi-core processors, equivalent to one-core processors.
It is also necessary to transform serial algorithms mto parallel ones, taking into
accoumnt the specifics of the processor’s architecture. The perspective for personal
computers to compete with the expensive computer clusters, speeialized in parallel
calculations, will require a change in algorithmic thinking and development of new
program tools on the basis of the calculation processes’ parallelization.

The integration of ODESsS as an initial value problem (IVP) can be written
down in the following way:

D) y=0y), y)=y

The solution of (1) as IVP is obtained as a series of values of y(r,) for
f, =ty +mAt.

The keystones in parallel calculations theory within the context of IVP are
formulated in a series of articles [1, 2, 3]. Similar issues are examined in [4] with
application in the field of orbital dynamics. in [5, 6] the prognostication of the orbital
motion of a large number (N ~10") of objects is examined on the basis of analytical
methods. |7, 8] expose other approaches to solving the same problem, however,
with different numerical methods.

The development of ODESS integrators (ODEsSI) and their application for
integration of space bodies” motion equations is one of the fields, which has always
been attractive for its final objective - achieving better precision and effectiveness.

In this work, we will focus on an approach for building a parallel ODEsSI
(PODESsSI), based on explicit Runge-Kuita-Fehiberg (RKF) schemes [8,10] and
on its application for satellite orbits’ integration. Preliminary results are obtained,
using double-core processors. The calculation model’s parallelization is based on
threads.

60

2. Space objects motion equations

We can examine the solution of a satellite’s motion equations (material
objects, N>>1} in the gravitational field of a central body as IVP:

@ =R)T =E)=, -
Index nis used to denote the object: 1< » < N . System (2) is of the second order
and can be reduced to a first order system:

=¥

H

nz.f;r(t’FnSFn)& Fn(t()):‘;‘;}" Fn(ta):‘_’-o

I

G)

!

The right - hand side of (2) can include in addition to the acceleration from a central
gravitational force f}f’""" different kinds of perturbations 11, 12]:

O REI T T
By analogy with [1] we can point to several reasons as a result of which the
solution of one IVP can be related with the use of much calculation time:
- complex calculation models are used for the calculation of different
disturbances in{4};
— the mathematical model describes the motion of numerous objects;
— the integration interval [t t__}islarge;
— multiple solutions of IVP to determination of the simulation model’s
parameters.

The computer modelling of multi-satellite space experiments, involving a
large set of instruments, intended to solve multiple scientific problems, aimed at
producing numerous parameters, contains the above-mentioned reasons. Appropriate
orbital elements are determined during the experiment design stage, which, within
the expected instrument operation period, are expected to have optimum conditions

for their implementation. The simulation of different aspects of the instruments’
operation in mode! conditions allows specifying some of their parameters (optical,
mechanical, electrical, mformational, etc.) inorder to obtain statistically reliable results.

3. Possibilities for parallelization

Gear [1] points to two approaches for caleulation parallelization by numerical
integration of ODEsS:
— Parallelism across the method,

61

— Parallelism across the system.
The phrase ,,parallelism across the mcthod” expresscs the possibility for different
calculation stages within the framework of one method to be executed independently
and simultaneously on different processors. This paper will be focused mainly on the
explicit classical RKT schemes, which are used to build the integrator of ODESS
(OSEsSI). The used schemes feature different precision order and are based on the

calculation of functions fn (t,.7,,7) for t <t<i . Eachofthe stages, related with
calculation of g,, and g, for moments ¢, is based on the previous one:

F S ?;‘n' «)and g . . Asaresult, the possibilities for parallc calculations
of coefficients g, , are restricted with regards to the separate system equations.
Each ofthe six g, can be calculated on a separate processor; with two processors,

each of them can be computed by three coefficients g, , . The implementation of
such kind of parallel calculations, however, requites special compilers.

The phrase “parallelism across the system™ means that one equation or a
group of equations, part of a large ODEsS, can be solved on 2 separate processor.
This kind of parallelism reflects to some extent the character of the solved problem,
It 1s very suitable for application in simultaneous integration of a large number of
cquations of type (2).

The parallclization of adaptive integrator of ODEsS, based on “parallelism
across the system” 1s examined in this paper.

4. Multi body ODEsS integrator

Fig. 1 shows the functional diagram of the integrator. The basic subroutine
rkfasd controls the choice of the integration scheme. The classical schemes of
Feldberg |9,10] are used — subroutines prkfDa, prif2a, prkfda, priféa and prifSa.
Subroutine kalkgr serves to evaluate the error and o verify whether the current
scheme 1s suitable or, another one should be selected.

Integration with a variable step within interval At is selected, if the scheme
with maximal precision is not suflicient. Subroutine pertur calculates the right - haud
side of (3). The serial version of the integrator is directly called on the basis of
subroutine rkfasd. It is designed as storage automata and can integrate simultaneously
many ODEsS with individual scheme choice for each system or step-size control, if
the precision of the highest-order scheme is not sufficient.

62

/:-_‘-‘h Cnnliianll

Thread 2
Integrator
P ot +
Simulation Thread | N
model - Integrator)
RKFASD
InitThreads
! k(Ra
| j
£= it || _.
/

Fig. 1. General functional diagram of the integraior.

The parallel version of ODEsSI (PODESsSI) is initialized before the first

integration step. A certain amount of integrator threads (Ith) are started according to
the number of processor cores. These threads are left in suspended state up to the
first addressing PODESsSI. The I'Th perform the selection of different ODEsS in

competitive conditions on the basis of a synchronizing code, shown below and
proceed until reaching the maximum number. The choice is protected from doubling
ol ODEsS and solving one system more than once by different IThs on the basis of
a special event. While one ITh is performing the choice of ODESS, the remaining
threads are waiting for the choice to be completed. When one ITh finishes the
integration of the respective system for the current moment ¢ and step At, it tries to
select the next system, if there are any remaining.

63

5. Threads’ synchronization

All calculations, related with the integration of ODESsS are portioned and
each portion is related with one specific time step. This requires synchronization of

the main and secondary threads ITh. The respective code in the basic parent’s
thread is, as follows:

SUBROUTINE traekt(num_sat,dt)

glo counter =0
a:DO i=1,num _th
k= SetEvent(thread par{i)>oha beg) ! Events for releasing threads
ENDDOa
k= WaitForMultipleObjects(num_th, ha_end, WaitAll, Wait_infinite)
b:DO i=1,num_th
k= ResetEvent(thread par(i}*sha_end) ! Events for starting threads
ENDDObG

END SUBROUTINE traekt

The above fragment of subroutine traekt illustrates the control of the
PODESsSI. The counter glb_counter which counts the number of ODESsS is zeroed
before starting the integration. In the first a:DO construct, the event objects ha_beg
for starting the threads’ operation are set out in a signalled state. After this, subroutine
traekt passes to a waiting state until all treads ascertain that all systems are solved.
The second b:PO construct makes non-signalled the event objects 2a_end which
point to the end of each I'Th. The latter ensures the waiting state in the integration
step.

Instead of the traditional call of the integrator as a subroutine, by analogy
with the serial version without parallef calculations (connection by address) we have
now synchronization of the parent’s thread and the I'Ths. Instead of transmitting data
by actual and formal arguments, now global data are used for transferring the address
of allocatable user-defined type data which contain the generic data - coordinates
of radius vectors, velocities, tolerance, efe.

The threads IThs perform two kinds of synchronizations. The first one is
with the basic thread and should perform the step integration of ODEsS. For this
purpose, event objects with handlers ka _beg are used to start the choice of ODEsS
and their solving; other event objects with handlers ka_end (by one foreach ITh),
signal the end of the integration. These event objects are the same as the above
described in connection with subroutine traekt. The second communication 1s

64

between IThs only and is devoted to concurrent ODEsS. As a result of this
synchronization it is possibie that while one thread is choosing a subsequent ODESS,
all others are waiting. In this way, the solution of one ODEsS with different threads
is avoided. The allocation of the systems among [Ths is achieved within the frames
of “b: DO WHILE()” construction, shown in the next fragment:

SUBROUTINE Integrator {(th_id num)

a: DO WHILE{ true.}
k= WaitForSingleObject(ha_beg WAIT_[INFINITE) ! Event for threads starting

b: DO WHILE(glb_counter.LT. numsat) ! OD2EsS concurtent distribution
k= WaitForSingleObject(ha_1,WAIT_INFINITE) ! prohibition ¢f ODEsS distribution
glb_counter= glb_counter + |: ! serial number of ODEsS
ioc_counter= glb_counter: ! remembering in local thread’s
storage
k= SetEvent(ha_1) ! release of ODEsS distribution

IF{loc_counter.GT.numsat) EXIT
CALL rkfasd({loc_counter,m,transfer_data(loc_counter)%at, ... }
ENDDOb ! end of concurrent distribution
k= ResetEvent(thread par(th _id num)%ha_beg)
k= SetEvent{thread par{th id num)%ha_end)
END DO a

END SUBROUTINE Integrator

6. Analysis of the effectiveness

The entire PODEsSI code is developed on Compaq Visual Fortran
Professional Edition v.6.6 under WindowsXP, using QuickWin library. Tests were
conducted on one core Intel and AMD processors for checking the correctness.
Experiments were conducted on a double core Athlon to establish the effectiveness
of the integration of' motion equations of six satellites with different orbits. The
experiments have shown that, with double core processors, the calculation time is
not possible to be decreased. The serial code execution time which is transformed
into a thread increases about twice. Besides, time is necessary for the threads’
synchronization between parent’s and children’s IThs. As a result, the execution
time of the parallel version exceeds the time of the serial one by about 30%.

7. Conclusion and future work

The basic part of the theoretic and experimental investigations which are
related with different aspects of solving ODEsS-1VP has private character and

65

restricted practical application. The increase of the effectiveness and the investigation
of ODEsS integration have major significance in solving complex problems related
with difficult simulation models of physical reality. These models can describe both
moving satelhites and different satellite subsystems. ‘The whole simulation model can
include models of instruments and mechanisms, of the environment where the
measurements are conducted, as well as of investigation method and investigated
object. Some of the private models can be deterministic and others - stochastic. In
such conditions, both the IThs and other threads can be initialized in completely
competitive conditions - for example, for calculation of the geophysical parameters
by orbits of satellites included in the model, the geomagnetic field, the directions of
the instrument optical axis, for measurements imitation and analysis of the statistical
reliabilify. Further analysis is necessary to explain the behaviour and effectiveness of
the adaptive parallel integrator in the framework of such a global model.

We can consider normal the above results obtained using double core
processors. [t s necessary to conduct experiments with quad core processors. We
can expect decreasc of the execution time of a parallel code compared to the
execution time of a serial code.

References

1. Gear C. W. The Potential for Parallelism in Ordinary Differential Equations, in Computational
Mathematics, ed. Simeon Fatunla, Boole Press, Dublin, pp33-48, 1987.

2. Jackson K. R.A Survey of Parallel Numerical Methods for Initial Value Problems for
Ordinary Differential Equations, [EEE Transactions on Magnetics, 27 (1991), pp.
3792-3797.

3.Stone L.C..S.B.Shukla, B. Neta. Paralle! Satelite Orbit Prediction Using a Workstation
Cluster, International J. Computer and Mathematics with Applications, 28, (1994),
1-8.

4. Necta B. Parallel Solution of Initial Value Problems, Proc. Fourth International Colloguinm
on Differential Equations, D, Bainov, V. Covachev, A. Dishliev (eds), Plovdiv, Bulgaria,
18-23 August 1993, 2,(1993), 19-42.

5.Phipps W E,B. Neta D.A Danielson. Parallelization of the Naval Space
Surveillance Satellite Motion Mode!l, J. Astronautical Sciences, 41, {1993}, 207-216.

6. NetaB.,D A Danielson 8.0strom,S. K. Brewer. Performance of Analytic Orbit
Propagators on & Hypercube and a Workstation Cluster.

7. Atanassov At Integration of the Equation of the Artificial Earth’s Sateilites Motion with
Sclection of Runge-Kutta-Fehlberg schemes of Optimum Precision Order., Aerospace
Research in Bulgaria, 2007, 21, 24-34,

8. KelyukaYuF,TI.Afanasieva, TA Gridchin, Precise Long-Term Prediction of

66

the Space Debris Object Motion, Proceedings of the 4th European Conference on
Space Debris, 18-20 April 2005, ESA/ESOC, Darmstadt, Germany.

G. Fehlberg E.Klassischc Runge-Kutta formeln funfter und siebenter Ordnung mit
Schrittweitenkontrolle., Computing, v. 4, p.93-106, 2569,

10. Fehlberg E. Klassische Runge-Kutta formeln vierter und nidrigerer Ordnung mit
Schrittweitenkontroile und thre Anwendung auf Warmeleitungsprobleme.,
Computing, v. 6, p. 61-71, 1970.

1.TIpoxopenko B, M. Onmucanue yHIBepcanbHOH MPOrpaMMsl pactieTa HaBHTaUHORHO’
uRGOpMAaLHK 0 NONOKEHNK HCKYCCTBEHHOTO ey THuKa Semmn. [p. UKW AH CCCP
Ne263, 1976, c.80.

12MMonmesuy [LP,B. L. Cxpedyuwescx it Baanucraieckoe ApOeKTHPOBAHKE
KOCMUHECKHX CHETeM., Mockra, MammunocTpoeHme, 1987, 23%9¢.

MAPAJTEJEH HHTEI'PATOP HA CUCTEMHW OT OBUKHOBEHH
JHOEPEHHHUAJMHN YPABHEHWA 3A CHMYANPAHE HA
KOCMHMYECKH EKCUEPMMEHTH

Am. Amanacos

Pezrome

Oﬁc’b}iﬂlﬁ"i CC PpA3nuIHEY BEIMOXKHHE H3ITOYMHHWHHA 348 HapaCTBaHC Ha
H34YHCANTEIHOTO BPEME JIpH DCLI2BAHE HA CUCTEMH OT OOHKHOBEHHU
mudepeHIMATHE YPaBHEHHS 38 TPOTHOZHPAHE HA IBHIKEHUETO HA KOCMHYCCKH
obextn. B nactoswmara pabota ce pasrieskaa NoAxXen 3a IOCTPOABAHE HA
HHTETPATOp HA CHCTEMHM OT OGUKHOBEHHU AH(EPERUHaNHE YpaRHeHHS
NpeAHasHauYcH 3a CAHOBPCMCHHO peHIaBaHe Ha YPaBHCHMS Ha ABHXKCHHE Ha
MHOro ofGexTH. [Ipeanara ce napanenu3alusd Ha H3YHCIEHHATA HAa OCHOBATa
Ha HHI1IIKH, Pa3rne>ma CC Ha4YMH 34 CHHXPOHH3a1 M1,

67

